Biography
Dr. Wittum obtained his Ph.D. (Dr. rer. nat.) in 1987 from Kiel University, Germany. He then pursued further academic qualifications at the University of Heidelberg, Germany, where he received his Habilitation in 1991 and began his first professorship in numerical analysis.
His academic career continued to advance as he served as Director of the Institute for Computer Applications at the University of Stuttgart, Germany, from 1994 to 1998. Following this, he became the Director of the Simulation in Technology Center at the University of Heidelberg, Germany, a position he held from 1998 to 2008. In 2008, he transitioned to the University of Frankfurt, where he led the Gauss Center of Scientific Computing (G-CSC).
After 25 years of serving as a professor at several leading universities in Germany, he joined KAUST, where he is currently a professor in the Applied Mathematics and Computational Science program.
Wittum’s work developing robust and scalable multi-grid methods and software systems for large-scale computing has led to numerous collaborative projects with industry partners, including ABB, Boston Consulting, Commerzbank, Daimler-Benz, the GICON Group, GRS, Porsche and more.
His contributions to science have been recognized with several prestigious awards, including the Heinz-Maier-Leibnitz Prize, the Controlled Release Society's Award and the doIT Software Award. Professor Wittum has also authored over 200 scientific publications.
Research Interests
Professor Wittum’s research focuses on a general approach to modelling and simulation of problems from empirical sciences, in particular using high-performance computing (HPC).
Particular areas of focus include the development of advanced numerical methods for modelling and simulation, such as fast solvers like parallel adaptive multi-grid methods, allowing for application to complex, realistic models; the development of corresponding simulation frameworks and tools; and the efficient use of top-level supercomputers.
Wittum applies his methods and tools toward problem-solving in computational fluid dynamics, environmental research, energy research, finance, neuroscience, pharmaceutical technology and beyond.